jueves, 6 de mayo de 2010

CL03 - NOCIONES DE CABLEADO


OBJETIVOS:


GENERAL:

Entender la teoría y el funcionamiento de los diferentes medios de comunicación.

ESPECÍFICOS

Entender los conceptos de resistencia y atenuación de las señales.
Conocer la teoría sobre medios de cobre – Coaxial, UTP, STP.
Conocer la teoría de rayos de luz
Entender el funcionamiento de la fibra óptica


Resistencia y atenuación

Toda la materia del universo está constituida por átomos. La Tabla Periódica de los Elementos enumera todos los tipos conocidos de átomos y sus propiedades. El átomo está compuesto de tres partículas básicas:

  • Electrones: Partículas con carga negativa que giran alrededor del núcleo
  • Protones: Partículas con carga positiva.
  • Neutrones: Partículas sin carga (neutras).

Los protones y los neutrones se combinan en un pequeño grupo llamado núcleo.

Voltaje: El voltaje, tensión o diferencia de potencial es la presión que ejerce una fuente de suministro de energía eléctrica o fuerza electromotriz (FEM) sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado, para que se establezca el flujo de una corriente eléctrica.

Es posible crear voltaje de tres otras formas: La primera es por fricción o electricidad estática. La segunda es por magnetismo y/o un generador eléctrico.

Los materiales a través de los cuales fluye la corriente presentan distintos grados de oposición, o resistencia, al movimiento de los electrones. Los materiales que presentan muy poca o ninguna resistencia se denominan conductores. Aquellos que no permiten que la corriente fluya, o que restringen severamente el flujo, se denominan aislantes. El grado de resistencia depende de la composición química de los materiales.

El término atenuación es fundamental a la hora de aprender sobre redes. La atenuación se relaciona a la resistencia al flujo de electrones y la razón por la que una señal se degrada a medida que recorre el conducto.

La letra R representa la resistencia. La unidad de medición de la resistencia es el ohmio (Ω). El símbolo proviene de la letra griega "Ω", omega


MEDIOS DE COBRE

Especificaciones de cableado

De acuerdo a las especificaciones se pueden generar diferentes expectativas en el cableado como:

• ¿Qué velocidad de transmisión de datos se puede lograr con un tipo particular de cable?
• ¿Qué tipo de transmisión se planea?
• ¿Qué distancia puede recorrer una señal a través de un tipo de cable en particular antes de que la atenuación de dicha señal se convierta en un problema?



Cable coaxial

El cable coaxial consiste de un conductor de cobre rodeado de una capa de aislante flexible. El conductor central también puede ser hecho de un cable de aluminio cubierto de estaño que permite que el cable sea fabricado de forma económica. Sobre este material aislante existe una malla de cobre tejida u hoja metálica que actúa como el segundo hilo del circuito y como un blindaje para el conductor interno. Esta segunda capa, o blindaje, también reduce la cantidad de interferencia electromagnética externa. Cubriendo la pantalla está la chaqueta del cable.


Existen dos cables de tipo coaxial:

  • Ticknet: cable coaxial grueso
  • Thinnet: cable coaxial delgado


Cable STP

El cable de par trenzado blindado (STP) combina las técnicas de blindaje, cancelación y trenzado de cables. Cada par de hilos está envuelto en un papel metálico. Los dos pares de hilos están envueltos juntos en una trenza o papel metálico. El STP reduce el ruido eléctrico dentro del cable como, por ejemplo, la diafonía.




Cable ScTP

Un nuevo híbrido de UTP con STP tradicional se denomina UTP apantallado (ScTP), conocido también como par trenzado de papel metálico (FTP). El ScTP consiste, básicamente, en cable UTP envuelto en un blindaje de papel metálico.



Los materiales metálicos de blindaje utilizados en STP y ScTP deben estar conectados a tierra en ambos extremos. Si no están adecuadamente conectados a tierra o si hubiera discontinuidades en toda la extensión del material del blindaje, el STP y el ScTP se pueden volver susceptibles a graves problemas de ruido.


Cable UTP

El cable de par trenzado no blindado (UTP) es un medio de cuatro pares de hilos que se utiliza en diversos tipos de redes. Cada uno de los 8 hilos de cobre individuales del cable UTP está revestido de un material aislante.

El cable de par trenzado no blindado presenta muchas ventajas. Es de fácil instalación y es más económico que los demás tipos de medios para networking. De hecho, el UTP cuesta menos por metro que cualquier otro tipo de cableado para LAN.

El cable UTP es más susceptible al ruido eléctrico y a la interferencia que otros tipos de medios para networking y la distancia que puede abarcar la señal sin el uso de repetidores es menor para UTP que para los cables coaxiales y de fibra óptica.




Un switch de LAN se conecta a un computador. El cable que se conecta desde el puerto del switch al puerto de la NIC del computador recibe el nombre de cable directo.




Switch aparecen conectados entre sí. El cable que conecta un puerto de un Switch al puerto de otro Switch recibe el nombre de cable de conexión cruzada.




El cable que conecta el adaptador de RJ-45 del puerto COM del computador al puerto de la consola del Router o Switch recibe el nombre de cable Rollover o traspuesto.



Dispositivos de igual función se conectan por cable cruzado
Dispositivos de diferente función se conectan por cable directo


La especificación 568A Commercial Building Wiring Standard de la asociación Industrias Electrónicas e Indústrias de la Telecomunicación (EIA/TIA) especifica el tipo de cable UTP que se utilizará en cada situación y construcción. Dependiendo de la velocidad de transmisión ha sido dividida en diferentes categorías:

Categoría 1: Hilo telefónico trenzado de calidad de voz no adecuado para las transmisiones de datos. Las características de transmisión del medio están especificadas hasta una frecuencia superior a 1MHz.

Categoría 2: Cable par trenzado sin apantallar. Las características de transmisión del medio están especificadas hasta una frecuencia superior de 4 MHz. Este cable consta de 4 pares trenzados de hilo de cobre.

Categoría 3: Velocidad de transmisión típica de 10 Mbps para Ethernet. Con este tipo de cables se implementa las redes Ethernet 10BaseT. Las características de transmisión del medio están especificadas hasta una frecuencia superior de 16 MHz. Este cable consta de cuatro pares trenzados de hilo de cobre con tres entrelazados por pie.

Categoría 4: La velocidad de transmisión llega hasta 20 Mbps. Las características de transmisión del medio están especificadas hasta una frecuencia superior de 20 MHz. Este cable consta de 4 pares trenzados de hilo de cobre.

Categoría 5: Es una mejora de la categoría 4, puede transmitir datos hasta 100Mbps y las características de transmisión del medio están especificadas hasta una frecuencia superior de 100 MHz. Este cable consta de cuatro pares trenzados de hilo de cobre.

Categoría 6: Es una mejora de la categoría anterior, puede transmitir datos hasta 1Gbps y las características de transmisión del medio están especificadas hasta una frecuencia superior a 250 MHz.

Categoría 7. Es una mejora de la categoría 6, puede transmitir datos hasta 10 Gbps y las características de transmisión del medio están especificadas hasta una frecuencia superior a 600 MHz.


MEDIOS DE FIBRA OPTICA

Espectro Electromagnético

La luz que se utiliza en las redes de fibra óptica es un tipo de energía electromagnética. Cuando una carga eléctrica se mueve hacia adelante y hacia atrás, o se acelera, se produce un tipo de energía denominada energía electromagnética. Esta energía, en forma de ondas, puede viajar a través del vacío, el aire y algunos materiales como el vidrio. Una propiedad importante de toda onda de energía es la longitud de onda.
La longitud de onda es un parámetro físico que indica el tamaño de una onda. Se define como la distancia, medida en la dirección de propagación de la onda, entre dos puntos, por ejemplo crestas.



La radio, las microondas, el radar, la luz visible, los rayos x y los rayos gama parecen ser todos muy diferentes. Sin embargo, todos ellos son tipos de energía electromagnética. Si se ordenan todos los tipos de ondas electromagnéticas desde la mayor longitud de onda hasta la menor, se crea un continuo denominado espectro electromagnético



El ojo humano está diseñado para percibir solamente la energía electromagnética de longitudes de onda de entre 700 y 400 nanómetros (nm). Un nanómetro es la mil millonésima parte de un metro (0,000000001 metro) de longitud. La energía electromagnética con longitudes de onda entre 700 y 400 nm recibe el nombre de luz visible. Las longitudes de onda de luz más largas que se encuentran cerca de los 700 nm se perciben como el color rojo. Las longitudes de onda más cortas que se encuentran alrededor de los 400 nm aparecen como el color violeta. Esta parte del espectro magnético se percibe como los colores del arco iris.
Las longitudes de onda que invisibles al ojo humano son utilizadas para transmitir datos a través de una fibra óptica. Estas longitudes de onda son levemente más largas que las de la luz roja y reciben el nombre de luz infrarroja. La luz infrarroja se utiliza en los controles remotos de los televisores. La longitud de onda de la luz en la fibra óptica es de 850 nm, 1310 nm o 1550 nm. Se seleccionaron estas longitudes de onda porque pasan por la fibra óptica más fácilmente que otras

Modelo de rayos de luz

Las ondas electromagnéticas viajan en línea recta denominada rayo. Cuando un rayo cambia de un material a otro (aire-vidrio-agua) cambia de velocidad y se denomina rayo incidente. En los límites de los materiales, parte de la energía del rayo se refleja. Por esta razón podemos vernos en un vidrio. La luz reflejada recibe el nombre de rayo reflejado.

La energía de la luz de un rayo incidente que no se refleja entra en el vidrio. El rayo entrante se dobla en ángulo desviándose de su trayecto original. Este rayo recibe el nombre de rayo refractado. Esta desviación de los rayos de luz en los límites de dos sustancias es la razón por la que los rayos de luz pueden recorrer una fibra óptica aun cuando la fibra tome la forma de un círculo. Un material más denso desacelera más el rayo de luz.

Reflexión

Cuando un rayo de luz (el rayo incidente) llega a la superficie de una pieza plana de vidrio, se refleja parte de la energía de la luz del rayo. El ángulo que se forma entre el rayo incidente y una línea perpendicular a la superficie del vidrio, en el punto donde el rayo incidente toca la superficie del vidrio, recibe el nombre de ángulo de incidencia. Esta línea perpendicular recibe el nombre de normal. No es un rayo de luz sino una herramienta que permite la medición de los ángulos. El ángulo que se forma entre el rayo reflejado y la normal recibe el nombre de ángulo de reflexión. La Ley de la Reflexión establece que el ángulo de reflexión de un rayo de luz es equivalente al ángulo de incidencia. En otras palabras, el ángulo en el que el rayo de luz toca una superficie reflectora determina el ángulo en el que se reflejará el rayo en la superficie.



Refracción

Cuando la luz toca el límite entre dos materiales transparentes, se divide en dos partes. Parte del rayo de luz se refleja a la primera sustancia, con un ángulo de reflexión equivalente al ángulo de incidencia. La energía restante del rayo de luz cruza el límite penetrando a la segunda sustancia.

Si el rayo incidente golpea la superficie del vidrio a un ángulo exacto de 90 grados, el rayo entra directamente al vidrio. El rayo no se desvía. Por otro lado, si el rayo incidente no golpea la superficie con un ángulo exacto de 90 grados respecto de la superficie, entonces, el rayo transmitido que entra al vidrio se desvía. La desviación del rayo entrante recibe el nombre de refracción.




Reflexión interna total

Un rayo de luz que se enciende y apaga para enviar datos (unos y ceros) dentro de una fibra óptica debe permanecer dentro de la fibra hasta que llegue al otro extremo. El rayo no debe refractarse en el material que envuelve el exterior de la fibra. La refracción produciría una pérdida de una parte de la energía de la luz del rayo. Es necesario lograr un diseño de fibra en el que la superficie externa de la fibra actúe como espejo para el rayo de luz que viaja a través de la fibra. Si un rayo de luz que trata de salir por el costado de la fibra se refleja hacia dentro de la fibra a un ángulo tal que lo envíe hacia el otro extremo de la misma, se formaría un buen "conducto" o "guía de ondas" para las ondas de luz.



La apertura numérica de la fibra: La apertura numérica del núcleo es el rango de ángulos de los rayos de luz incidente que ingresan a la fibra y que son reflejados en su totalidad.



Fibra multimodo

La parte de una fibra óptica por la que viajan los rayos de luz recibe el nombre de núcleo de la fibra. Los rayos de luz sólo pueden ingresar al núcleo si el ángulo está comprendido en la apertura numérica de la fibra. Asimismo, una vez que los rayos han ingresado al núcleo de la fibra, hay un número limitado de recorridos ópticos que puede seguir un rayo de luz a través de la fibra. Estos recorridos ópticos reciben el nombre de modos. Si el diámetro del núcleo de la fibra es lo suficientemente grande como para permitir varios trayectos que la luz pueda recorrer a lo largo de la fibra, esta fibra recibe el nombre de fibra "multimodo".


Componentes de la fibra multimodo

  • El núcleo es el elemento que transmite la luz y se encuentra en el centro de la fibra óptica.
  • Alrededor del núcleo se encuentra el revestimiento. El revestimiento también está fabricado con sílice pero con un índice de refracción menor que el del núcleo.
  • Alrededor del revestimiento se encuentra un material amortiguador que es generalmente de plástico
  • El material resistente rodea al amortiguador, evitando que el cable de fibra óptica se estire cuando los encargados de la instalación tiran de él. El material utilizado es, en general, Kevlar, el mismo material que se utiliza para fabricar los chalecos a prueba de bala.
  • El último elemento es el revestimiento exterior. El revestimiento exterior rodea al cable para así proteger la fibra de abrasión, solventes y demás contaminantes. El color del revestimiento exterior de la fibra multimodo es, en general, anaranjado, pero a veces es de otro color


Medidas de la fibra multimodo:

Un cable de fibra óptica multimodo estándar utiliza una fibra óptica con núcleo de 62,5 ó 50 micrones y un revestimiento de 125 micrones de diámetro. A menudo, recibe el nombre de fibra óptica de 62,5/125 ó 50/125 micrones. Un micrón es la millonésima parte de un metro (1µ).

La fibra multimodo (62,5/125) puede transportar datos a distancias de hasta 2000 metros (6.560 pies).


Fibra monomodo

La fibra monomodo consta de las mismas partes que una multimodo. El revestimiento exterior de la fibra monomodo es, en general, de color amarillo. La mayor diferencia entre la fibra monomodo y la multimodo es que la monomodo permite que un solo modo de luz se propague a través del núcleo de menor diámetro de la fibra óptica. El núcleo de una fibra monomodo tiene de ocho a diez micrones de diámetro. Los más comunes son los núcleos de nueve micrones.

Por su diseño, la fibra monomodo puede transmitir datos a mayores velocidades (ancho de banda) y recorrer mayores distancias de tendido de cable que la fibra multimodo. La fibra monomodo puede transportar datos de LAN a una distancia de hasta 3000 metros.

Las fibras monomodo y el láser son más costosos que los LED y la fibra multimodo. Debido a estas características, la fibra monomodo es la que se usa con mayor frecuencia para la conectividad entre edificios.


Componentes Ópticos

  • Un diodo emisor de luz (LED) que produce luz infrarroja con longitudes de onda de 850 nm o 1310 nm. Se utilizan con fibra multimodo en las LAN. Para enfocar la luz infrarroja en el extremo de la fibra, se utilizan lentes.
  • Amplificación de la luz por radiación por emisión estimulada (LASER) una fuente de luz que produce un fino haz de intensa luz infrarroja, generalmente, con longitudes de onda de 1310nm o 1550 nm. Los láser se usan con fibra monomodo para las grandes distancias de los backbones de universidades y WAN
  • El tipo de conector que se usa con mayor frecuencia con la fibra multimodo es el Conector Suscriptor (conector SC). En una fibra monomodo, el conector de Punta Recta (ST) es el más frecuentemente utilizado.

No hay comentarios: